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Abstract. A fully three-dimensional analysis of the convective instability af a planar 
superlattice b m e d  in the regime of Regarive differential miniband conductance is c-d out 
for the first time with accurate microscopic treatment of phonon and impurity scatterings. For 
a typical G a s - b a e d  superlattice having period d = IO nm, miniband width A = 900 K and 
electron sheet density N, = 1.5 x IOi5  m-', we find that the convective space-charge w a w  
propagate at a phase velocity ranging from 0.75~0 to 0.95~0 ("0 is the carrier d6ft velocity) and 
with am amplitude growth rate only about a few per cent of that predicted by the conventional 
drift-diffusion model and other existing methods. 

Negative differential mobility (NDM) in vertical superlattice transport, predicted a quarter of 
a century ago by Esaki and Tsu [l] and recently observed [24] ,  has attracted much attention 
in the literature [5-81. NDM has not only brought into focus the prospect of realizing 
a superlattice microwave oscillator, spurring on studies of miniband response at high 
frequency [9-121, but it is also intimately related to instability of the uniform distribution of 
electric field in  superlattices. Unlike narrow-miniband systems in which the salient transport 
inhomogeneity shows up in the formation of high-field domains and in periodic structure 
of the I-V characteristic when the applied voltage surpasses a threshold [13-161, the most 
interesting conduction phenomena in wide-miniband superlattices are those related to Esaki- 
Tsu NDM at relatively low electric field. The basic physical features of these Bragg- 
diffraction-related phenomena follow~from a one-dimensional band smcture. Nevertheless. 
carrier scatterings by impurities, by phonons and among themselves make the problem truly 
three dimensional (3D). The existing nonuniform models [17, 181, using constant relaxation 
times in place of the scattering contributions and being essentially one dimensional (1D) 
in nature, are not sufficient for a quantitative examination of miniband conduction. In 
this paper we report a fully three-dimensional analysis of miniband transport for a planar 
superlattice, treating both spatial inhomogeneity and realistic scattering mechanisms, within 
the framework of a 3D balance-equation approach [6, 19-22]. 

Consider an infinite GaAs-based planar superlattice in which electrons move freely in 
the transverse (x-y) plane and can travel along the growth axis (z-direction) through the 
(lowest) miniband formed by periodic potential wells and barriers of finite height. The 
electron energy dispersion can be written as the sum of a transverse energy ~ k ,  = k;/2m (m 
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being the band mass of the carrier in the bulk semiconductor), and a tight-binding miniband 
energy &(kz) related to the longitudinal motion: 

&(k)  = Ek, + &) ( 1 )  

&(kr) = (A/2)(1 -cosk,d) (2) 

X L Lei er a[ 

with 

where k = (kil, kz), kl = (kx, k,) represents the in-plane wavevector: -CO < kx, ky < CO, 
and -n/d < k, < n j d ,  d being the superlattice period along the z-direction, and A is the 
miniband width. 

In the balance-equation nansport theory for an arbitrary energy band [19, 201, the 
transport state of a many-electron system is described by the average (per carrier) centre-of- 
mass momentum pd and the electron temperature Te. In spatially homogeneous cases, the 
acceleration and the energy-balance equations completely determine the system response to 
either constant or time-dependent uniform electric fields. For the spatially inhomogeneous 
case, in addition to pd and TL, we employ also 5 (the ratio of the chemical potential to 
T,) as a fundamental variable, and treat pd, T, and 5 ,  and correspondingly the carrier 
number density n, the average drift velocity vd and all other quantities, as being time 
and space dependent [21, 221. Considering balances of the carrier number density, the 
acceleration and the energy in a small volume element around a spatial position, we obtain 
hydrodynamic balance equations of the following type for superlattice vertical transport, in 
which the electric field and the carrier drift are assumed in the z-direction, E = (0, 0. E),  
pd = (0.0, p d )  and vd = (0, 0, u d ) ,  with spatial inhomogeneity only along the superlattice 
z-axis: 

- n W ,  

Here, n is the average carrier density, E the average carrier energy, ud the average carrier 
drift velocity, l l m ;  the zz-component of the inverse effective-mass tensor, B, the zz- 
component of the average velocity-velocity dyadic, and S, the z-component of the energy 
flux vector. They are functions of zd pdd,  Te, and {, and thus are time and space 
dependent through these fundamental variables. In these equations the frictional acceleration 
A = At +A, (due to impurity and phonon scatterings), and the energy-loss rate (per particle) 
W (due to phonon scattering) are given by the same expressions as those given in [6]. For 
a superlattice system with known impurity distributions and phonon modes and known 
electron-impurity potentials and electron-phonon coupling matrix elements, A and W, are 
completely determined by zd, T, and 5 .  

The electric field relates to space charge through its divergence in accordance with the 
Gauss theorem (Poisson equation): 

where e is the electron charge, K is the dielectric constant of the semiconductor, and no is 
the background density of positive charge which is assumed to be uniformly distributed over 
the whole superlattice. This equation shows that if the electric field is uniformly distributed, 
aE/az = 0, the electron charge density is n =no .  



with f ( x )  = l/[exp(x) + I] being the Fermi distribution function. 
To investigate the dynamic mobility and proceed with the mode analysis under 

drifted conditions we consider small wavelike fluctuations: Szd; ST,, 65, Sud and SQ - exp[i(kz - wr)] (Q stands for E ,  n, l/m:, B,, S,, E .  E ~ ,  or E,,) ,  superimposed on 
the corresponding dc bias quantities such that zd = zo + Szd, T, = To + 6Te, 5 = 50 + 6 5 ,  
Ud = Vo + , S u d s  and Q 

In the zeroth order, the continuity equation (3) and the Poisson equation (6) are identities, 
and the other two equations are just the dc steady-state equations for the effective force and 
energy balance in the spatially homogeneous case: 

Qo + SQ. 

0 = eEo/mro + A0 

0 = eEouo - WO 
(14) 

(15) 
where 

vo = v,a~osinzo (16) 

l /mfo =( l  - 2<,o/A)/M' (17) 

Ezo = (A/2)(1 -01ioCos~o) (18) 

1 = ffo(To, To).  (19) 

and 

Here we have used the notation a 1 0  = cr~l(%,<~),  A0 e A(zo, %,to), and WO 
W(z0, T0;Co). Equation (19) determines CO as a function of TO in the spatially homogeneous 
condition. The solutions of the equations (14) and (15) have been discussed in [6]. The 
dependence of the bias drift velocity vo as a function of the bias electric field EO on the 
miniband width, superlattice period, carrier density, lattice temperature and strength of 
impurity scattering have been examined in some detail for n-type GaAs systems [6]. 

As an example, we consider a GaAs-based superlattice with period d = IO nm, miniband 
width A = 900 K, carrier sheet density N, = 1.5 x 10ls m-', and low-temperature linear dc 
mobility ~ ( 0 )  = 1.0 mz V -Is-' a t lattice temperature T = 300 K. The dc steady-state drift 
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Figure 1. The drift velocity "(1 in de steady-state tmnsport, as determined by equations (14) 
and (15). is shown as a function of the applied field EO at lattice temperature 7 = 300 K, for 
a --based superlanice with period d = IO nm. miniband width A = 900 K. carder sheet 
density N,f = 1.5 x IOL5 m-' and low-temperature linear dc mobilily p(0) = 1.0 m2 V-' s-l. 

velocity as a function of electric field (UO versus EO) obtained from the zero-order balance 
equations (14) and (15) is shown in figure 1. 

The balance equations for linear order fluctuations can be written in terms of four 
variables: Sed.  ST,, Sg and SE, and they form a set of four hqmogeneous linear algebraic 
equations. The coefficients of this set of equations are obtained in a straightforward manner, 
but the expressions for them are rather lengthy. We omit them here in the interests of 
brevity. For this set of linear algebraic equations to have a nonzero solution requires that 
their determinant vanishes: 

D(k,  o) = 0. (20) 

This determines the dispersion relation between k and o for all the eigenmodes of the 
system. 

In the spatially uniform case, k =-0, equation (20) yields D(0, U )  = 0, which is satisfied 
for arbitrary w .  Therefore, we can, in principle, apply a small uniform ac field SE of (real) 
frequency o superimposed on a bias dc field Eo, and consider the velocity response 6vd of 
the system. The small-signal (complex) mobility is defined as 

SUd 

6E p 

The real part of this small-signal mobility in the space-uniform case, Repw. calculated for 
the system described above, is shown in figure 2 as a function of frequency U W / Z H  of 
the ac driving field at several different dc biases Eo ranging from 0.2 to 15 kV cm-l. 

In the spatially inhomogeneous case of k f 0, equation (20) can be satisfied generally 
only for complex k = kl + ikz and/or complex o = w~ + iwz. We concentmte here on the 
most interesting drift-relaxational modes and related instabilities and examine the case of a 
real wavevector: k =~kl  and k2 = 0. The real wavevector kl and the imaginw part of the 
frequency, o2, obtained from equation (20) as functions of the real frequency v = wl/2n 
are shown, respectively, in figures 3 and 4 for several dc bias fields EO from 2.0 kV cm-I 
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Figure 2. The real parl of the sdl-signal mobility in the spatially uniform case. RewU. is 
shown as a function of the signal frequency U = ojzl for the CaAs-based superlattice as 
described in figure I. L lattice temperature T = 300 K with the bias electric field Eo ranging 
from 0.2 to 15 kV cm-'. 

io 7.0 kV cm-'. When biased in the NDM regime, 0 2  is positive for low wl (low k) ,  
and continues to be positive with~increasing frequency until w1 reaches a maximum value 
dependent on the bias. A positive w2 implies a travelling wave 

expIo2t + i(klz - q t ) ]  (22) 

propagating along the positive z-direction with its amplitude growing exponentially as a 
function of time. The phase velocity of this space-charge wave, uph = w l / k l ,  can be 
obtained from figure 3 and is shown in the inset of this figure. Depending on the bias and 
frequency, uph varies from 0.75~~ to 0.95u0, uo being the bias drift velocity. 

The convective instability in semiconductors exhibiting NDM has usually been analysed 
using aphenomenological drift-diffusion (DD) model [23], which yields a dispersion relation 
for real k = kl (k2 = 0) of the form 

w = uok - i(w, + Dk2) (23) 
where 

wc = (enO/QK)PO (2) 

with KO = auo/aEo being the zero-frequency differential mobility and D a diffusion 
constant Equation (23) describes a convective space-charge wave having a phase velocity 
equal to the carrier drift veIocity uo and an imaginary frequency component wz = -oc at 
small wavevector. Earlier balance-equation methods yield essentially the same behaviour 
for small k [17, 181. The present 3D analysis, however, leads to a significantly different 
result: convective space-charge waves propagate at a phase velocity varying from 0.75~0 
to 0.95~0 and with an imaginary frequency w2 of about 1.9 to 3.8% (for EO from 4.0 to 
7.0 kV cm-l) of Iw,I (equation (24)) calculated from zero-frequency mobility PO. 

One should not be overly surprised by these results. The hydrodynamic balance 
equations we have employed to analyse the space-charge-wave modes are considerably 
more sophisticated than the drift-diffusion (DD) model previously used in the literature. The 
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Figure 3. The r e d  wavevector panmeter, k,d.  obtained from dispersion equation (20) in the 
m e  where k i  = 0 is plorted as a function of real frequency Y = w1/2x at lattice temperature 
T = 3W K under seierd different dc bias fields, for Ihe same GaAs-based superl&ice as 
described in figure 1. The inset shows the phase velocity uph in units of bias drift velocity U,, 
as a function of Y usderdiffrrent dc bias fields ranging from 2.0 to 7.0 kV cm-l. 

Frequency Y =01/2x (GHz) 
Figure 4. The imaginary frequency panmeter. w / ~ R .  obtained from dispersion equation (20) ~ . . ~ ~  
in the case where kl = 0 is shown as a function of real frequency Y = w i / 2 n  for the same 
Gas-based superlattice as described in figure I a1 lattice temperature T = 300 K under several 
different dc bias fields. 

phenomenological DD model is based on the assumption that the system exhibits NDM and 
has a very short momentum  relaxation^ time. It takes partial account of the effects of spatial 
inhomogeneity only through the carrier-density-associated diffusion term, but disregards 
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spatial variations of the electron temperature and centre-of-mass variables. The DD model is 
also deficient in that it completely ignores energy balancehence the frequency dependence 
of the ac mobility in the spatially uniform case is neglected, while this is vital in high-field 
minihand transport. The present hydrodynamic-balance-equation approach, which takes 
proper account of the energy balance and provides a unified description of dc steady-state, 
high-frequency and spatially inhomogeneous transport, is quite different from the DD model. 
In this balance-equation approach there is an energy relaxation time which is an order of 
magnitude larger than the momentum relaxation time, so the ac mobility exhibits a strong 
frequency variation at relatively low frequency. Furthermore, spatial inhomogeneity is 
considered through all the variables involved. These are the physical reasons for the present 
halance-equation predictions for the convective space-charge wave differing from those of 
the DD model. Nevertheless, the present hydrodynamic model still predicts the existence of 
unstable convective space-charge waves, in qualitative agreement with the DD model. This 
suggests that Gunn-like phenomenology due to Bragg-scattering-induced NDM may occur 
in wide-miniband superlattices. Previously explored one-dimensional models, which yield 
essentially the same results as the DD model, are not sufficient for a quantitative analysis. 
The full 3D hydrodynamic balance equations (3)-(5) introduced here provide convenient 
and more accurate tools for dealing with these miniband effects. 
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